更新时间:2025-03-28 10:27:42
封面
版权页
序1
序2
前言
第一部分 基础知识
第1章 电源的概念
1.1 稳压电源的发展历史
1.2 电源的分类
1.3 开关电源按是否隔离进行分类
1.4 开关电源的调制方式
1.5 开关电源的CCM、DCM、BCM模式
1.6 同步与非同步电源
1.7 电源芯片规格书要点
1.8 有效电流的概念
1.9 有效电流的计算
第2章 电源电路的基本元器件
2.1 电阻在电源电路中的应用
2.2 电容在电源电路中的应用
2.3 电感在电源电路中的应用
2.4 MOSFET在开关电源中的应用
2.5 变压器在电源电路中的应用
第3章 线性电源的原理与设计
3.1 线性调整器的工作原理
3.2 线性电源的实现方式
3.3 线性电源输出电容与输入电容
3.4 线性电源的关键参数
3.5 低压差线性稳压器(LDO)
第二部分 开关电源的拓扑结构
第4章 各类电源拓扑的基本原理
4.1 开关电源的三个基本拓扑
4.2 开关电源的各种拓扑结构之间的关系
4.3 开关电源的各种拓扑的特性对比及选择
第5章 Buck电路的原理与设计
5.1 Buck电路的工作过程
5.2 Buck电路的输出电感
5.3 Buck电路的输入电容
5.4 Buck电路的输入电感
5.5 Buck电路的输出电容
5.6 Buck电路的Boot电容(自举电容)
5.7 Buck电路的输出电流检测
5.8 Buck电路的效率与损耗
5.9 Buck电路的多相拓扑设计
第6章 Boost电路的原理与设计
6.1 Boost电路的工作过程
6.2 Boost电路的电感选型
6.3 Boost电路的CCM模式与DCM模式
6.4 Boost变换器的二极管
6.5 Boost变换器的输入电容
6.6 Boost变换器的输出电容
第7章 反极性Buck-Boost电路的原理与设计
7.1 反极性Buck-Boost电路的工作过程
7.2 反极性Buck-Boost电路的电感选型
7.3 反极性Buck-Boost电路的输出电容选型
7.4 反极性Buck-Boost的CCM模式和DCM模式
7.5 反极性Buck-Boost的MOSFET和二极管选型
第8章 其他非隔离拓扑的原理与设计
8.1 Cuk电源工作原理
8.2 Zeta电源工作原理
8.3 SEPIC电源工作原理
8.4 四开关Buck-Boost电源原理及工作过程解析
第9章 隔离DC/DC电源的原理与设计
9.1 为什么需要隔离电源
9.2 “正激”和“反激”
9.3 反激隔离式开关电源的工作过程
9.4 反激式开关电源的反馈
9.5 反激式开关电源的变压器基本原理
9.6 反激式开关电源的变压器的关键参数
第三部分 开关电源的控制器和控制理论
第10章 环路控制的数学基础
10.1 开关电源环路的基本概念
10.2 傅里叶级数概述
10.3 从傅里叶级数到傅里叶变换
10.4 从傅里叶变换到拉普拉斯变换
10.5 传递函数与波特图
10.6 零点和极点
10.7 拉普拉斯变换的收敛域
第11章 环路控制的电路分析
11.1 电容基础特性探讨
11.2 RC滤波电路的频域和时域特性探讨
11.3 典型LC滤波器的频域分析
11.4 单极点系统的频域分析
11.5 积分器的频域分析
11.6 闭环稳定性的评判标准
11.7 环路补偿电路
11.8 线性电源的环路分析
第12章 电源控制器
12.1 开关电源为什么需要控制系统
12.2 开关电源控制为什么比想象中复杂
12.3 如何理解功率级
12.4 为什么误差放大器会影响系统的响应速度
12.5 定频控制
12.6 变频控制
第四部分 电源的工程问题
第13章 电源完整性
13.1 电源完整性基础
13.2 ADS电源完整性仿真流程
13.3 电源完整性直流仿真分析
13.4 电源完整性电热仿真
13.5 电源完整性交流分析