![系统建模与控制导论](https://wfqqreader-1252317822.image.myqcloud.com/cover/696/50417696/b_50417696.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
2.1 拉普拉斯变换的性质
接下来,我们回顾拉普拉斯变换的一些可以简化计算的性质。第一个性质是对拉普拉斯变量s的微分。
性质1
设
L{f(t)}=F(s)对于Re{s}>σ
那么
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/51_07.jpg?sign=1738823613-KYZoC5Vdatw7JNjbTCRNVU1Moft1zLxm-0-9a9864c0fe54fb018a08fbcd81aee84c)
证明
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/51_08.jpg?sign=1738823613-5pH4GmFAzZAQ4XZscapn0RvWic9AsxRZ-0-2a57ea54790b1341be585b46fcbfde4e)
所以
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/51_09.jpg?sign=1738823613-uChHT1qDwJOusmupXfI0fmtvxaSji7Re-0-6bdb17ef1940e20b667bbc37e8f3e825)
作为这个性质的一个例子,我们展示如何获得任意n的tn/n!的拉普拉斯变换。
例5
在前面的例子中已有
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_02.jpg?sign=1738823613-eS6epsWihnqNH7qLKW5UR83ajMyLKMcI-0-c457f9ea9208a34dd5120e07af0be992)
因此
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_03.jpg?sign=1738823613-l6K76SRL6Z0BYf0ZIjXryM6Q0FjUG8Zc-0-82fd83b8207208db7d4c5611d8c2bdfa)
我们对
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_04.jpg?sign=1738823613-3fTu6BsRkgScjCbUg4ZJjIKCvgjCLIFD-0-0e7731002ecbee26d4820af1af450e83)
两边的s进行微分,有
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_05.jpg?sign=1738823613-cUrccHzEHdjHqpNukxfCPTTspFPON3FD-0-dea53cfc30da49ee88c30bb38f8dfc73)
或者
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_06.jpg?sign=1738823613-wk6NxuZYU2CdWPLh8FZw7FI1jDIYZfMG-0-0c40599e66ca425f4a461b6eb1019a61)
类似地,对于任意的n=0,1,2,…,都有
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_07.jpg?sign=1738823613-abOD59BoUonT2D7DkokoSZ2nqQpSJJOT-0-242f2507aa2df624303b93d47a700501)
例6
我们在之前的例子中可知
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_09.jpg?sign=1738823613-JUsyCCIlAqOjBL6L0VNmgXk5CZQ0NQDl-0-c1ece3a9d67c50a190b3227a373d3826)
根据式(2.8)我们可以得到
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_10.jpg?sign=1738823613-aejZe2Bf0Jmk8f0smWmWgyIzeb2wXGhH-0-0103efe3498dcaaff9934594c5150b25)
性质2 L{eαtf(t)}=F(s-α)
令
L{f(t)}=F(s)对于Re{s}>σ
则
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/53_01.jpg?sign=1738823613-4f1cv5gHMVsjHfdWKX0o3FCSjW1DM2Vv-0-19c7e259780d932cfa7632ba844163a5)
证明
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/53_02.jpg?sign=1738823613-0OCpDYBJwz5QnJhqoOrSGTjubJxTYOQ5-0-303978a367f4acada530b8f80fae423e)
例7 f(t)=cos(ωt)
已知
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/53_03.jpg?sign=1738823613-NA68yGeRhxVVky39DpZbWOqRijfn92wU-0-446974fec0ab7c68db7b434ebef16a09)
可得
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/53_04.jpg?sign=1738823613-6iD7VDnkuCzW1tQPBtqiA97pQnqyMp5s-0-c95de7c2c87d8090071c563a4438e4d4)
性质3
令
L{f(t)}=F(s)对于Re{s}>σ
则
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/53_06.jpg?sign=1738823613-7JZ2bz1Nbxawz58wKArCbACgh56pTyDp-0-c32566ee9c739f9273ad23588659e2e1)
证明 根据拉普拉斯变换的定义可得
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/53_07.jpg?sign=1738823613-2Fi2XOHsyaqnEe53aq693iLXkVQ8m3Ys-0-99a7da3b4d9b5d9399e14262fd3961cf)
接下来用分部积分法,令
u=e-st,dv=f′(t)dt
并且
du=-se-stdt,v=f(t)
于是
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/53_08.jpg?sign=1738823613-0oUunK5D8UIRCRccdEKV00t5BDL717pb-0-906cead9e1313ceac8b783da590416dd)
对于Re{s}>σ,存在f(t)的拉普拉斯变换,使对于Re{s}>σ成立[1]。因此最后一个方程变为
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_01.jpg?sign=1738823613-ZZ8df6bo1I0BbFbkKNdkGJfkbfD3smPw-0-db9911abfc6788aaf686667657064a6d)
例8 f(t)=cos(ωt)
f(t)=cos(ωt)和它的导数分别为
f(t)=cos(ωt)
f′(t)=-ωsin(ωt)
对于Re{s}>0,f(t)和f′(t)的拉普拉斯变换都存在。于是利用
L{f′(t)}=sL{f(t)}- f(0)
我们可以得到
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_02.jpg?sign=1738823613-eYfAdRbBQkK8oL4uI4VHgbN6eikzYfEG-0-e7ad764fa40a816e6775167bccf545e7)
或者,经过整理可以得到
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_03.jpg?sign=1738823613-HNTVuODeMBFAFsHtVPG7nKQaia1lns0c-0-6fabf3f85efa88a987cbfee1fe5c425a)
例9 解微分方程 考虑一阶微分方程
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_04.jpg?sign=1738823613-tNh46Qk2MFQc2fOutgfzbZluJxKtPypp-0-34b0f78238d5506c12d8cd03ab59221c)
其中,输入us是阶跃输入,并且
X(s)≜L{x(t)}
我们有
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_05.jpg?sign=1738823613-7i08NJsn0yzVN5s6jn0wDPY7GL0e0OkN-0-4493c0b2ef2582d16a297953e00a2e49)
并且
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_06.jpg?sign=1738823613-qOr8luVBlylXDi2c4J91yIEv57GueiQX-0-0ae620efa8935b6405117f4e2b1d0f66)
对微分方程两边同时做拉普拉斯变换,可得到
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_07.jpg?sign=1738823613-eHPbdPX9PMv55hrLGR0AAHhwVNiSHELj-0-d98e8cb5cbd045b0bf296e34f1831b72)
继而
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_08.jpg?sign=1738823613-Mdko8btpzVViYIaPSwEGS9zV1kWkhepv-0-c70f4ad178c5a7ca25cfdafebbfe3b1a)
将X(s)提到公式左侧,可以得到
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_09.jpg?sign=1738823613-sfrTQCLtU5p3P5AT95EpgeRLZf4NQrPp-0-cbed023812013d8b9a8cc870b7a15f8e)
化简得
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_10.jpg?sign=1738823613-H8VH3jangQVPNlOiF2tgECnYQNggpNAC-0-ada9a4ed24c8584d891117ef52c339e6)
为了解出x(t),我们需要计算
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/55_01.jpg?sign=1738823613-NCATVH57gfsKOiCGmmM99idPQ8E9AKqh-0-dd0ccdbccf2f17a98c918dd2a9f3d81c)
第二个方程后面是部分分式展开,这涉及下一节的内容。