![迁移学习算法:应用与实践](https://wfqqreader-1252317822.image.myqcloud.com/cover/428/47755428/b_47755428.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/3_01.jpg?sign=1739269286-LEhFrw2evoU8Hzok6cEaLbNSllzqjuxz-0-1c4e1225ab3c101ca1f7fd8538bb4be6)
图4.5 表达图像完整与部分信息的示例
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/3_02.jpg?sign=1739269286-aLeeMDFQb5q8pFGxZCjJVO5ZxZOqyfyc-0-c2d891a679a05ead7080ec185185b4fb)
图4.7 单源领域自适应与多源领域自适应。在单源领域适应中,源领域和目标领域的分布不能很好地匹配,而在多源领域适应中,由于多个源领域之间的分布偏移,匹配所有源领域和目标领域的分布要困难得多[71]
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/3_03.jpg?sign=1739269286-WHlsUNqmTglfwxyP9Tk6odnuiAp2WVa1-0-936a8b82e716f5c081416679a2ca8fa2)
图4.8 同时对齐分布和分类器的多源自适应方法[71]
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/4_01.jpg?sign=1739269286-d4Y6BUbzP5Z5zBIY56p13I0BHSKTh9q5-0-a41e7e3d62582bcde3786a590c4b4ab5)
图5.4 领域对抗神经网络可视化结果[64]
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/4_02.jpg?sign=1739269286-tUmAa5NUKW4F5XmhXfsTPcdsOHCklxfw-0-bf89bede432eb59a038a098534e9cf21)
图6.2 关于TrAdaBoost算法思想的一个直观示例
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/5_01.jpg?sign=1739269286-pVNWKxuEWJbLAc70PVB3nE6eI3FdNLu4-0-70fb6c157f5655786ae6ca9ea90d8a38)
图6.10 基于锚点的集成学习示意图[100]
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/5_02.jpg?sign=1739269286-Oo7bCa0C3yYBmpgng1f26V5uWplBDSF5-0-bffad4a5bf41eed7c81657bed0885fe0)
图8.9 拆分架构[130]
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/6_01.jpg?sign=1739269286-N7uOXPVivErlJRbmE8B1nFCl3ugO5IhW-0-fc528d52b193b1fed2aeac747e7c2c11)
图9.4 视图不足假设[136]
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/6_02.jpg?sign=1739269286-inI4HDiFTZU6YSjAfVch3GPNeEHemDN0-0-0ac846e6465c3baa175dce4db7a11dde)
图10.20 风格迁移示意图[202]