![硅基射频器件的建模与参数提取](https://wfqqreader-1252317822.image.myqcloud.com/cover/930/43737930/b_43737930.jpg)
2.5.3 三维电感的模型参数提取
下面介绍三维电感的模型参数提取过程,首先本征基本单元总电阻nRC可以由-1/Y21的实部确定:
![img](https://epubservercos.yuewen.com/BD9427/23020634701634806/epubprivate/OEBPS/Images/txt002_66.jpg?sign=1738847783-LtAuPpAN7YItmw9rTt436m8b6DRAIyZG-0-109d418e46c7e098405f4bd90ec3d5ad)
本征基本单元总的电感Lvia+nLC可以由-1/Y12的虚部在低频情况下确定:
![img](https://epubservercos.yuewen.com/BD9427/23020634701634806/epubprivate/OEBPS/Images/txt002_67.jpg?sign=1738847783-bZ5b1uwaDtvbhOF4D7yhROlQoCoKJcRF-0-6def63fdcf500f50426f71dce3644907)
式中,n为本征基本单元的数目,ω为角频率。
氧化层电容Cox1和Cox2由-1/(Y11+Y12)和-1/(Y22+Y12)的虚部在低频情况下确定:
![img](https://epubservercos.yuewen.com/BD9427/23020634701634806/epubprivate/OEBPS/Images/txt002_68.jpg?sign=1738847783-ndvJFWHvumxgyxjB5Hwry1QRuULsxtW0-0-f1cb2c162879159b33011e8f935ae635)
衬底电阻Rsub1和Rsub2可以由下面的公式估计:
![img](https://epubservercos.yuewen.com/BD9427/23020634701634806/epubprivate/OEBPS/Images/txt002_69.jpg?sign=1738847783-1EjjfUqyaQeneBVx46w3rPXkCKr42xrF-0-388b6a8c4a9f2a2602e21feaecb19c29)
衬底电容Csub1和Csub2可以由下面的公式估计:
![img](https://epubservercos.yuewen.com/BD9427/23020634701634806/epubprivate/OEBPS/Images/txt002_70.jpg?sign=1738847783-tjkLPXA3FkOUGDMD0u11XANnUs3MAh16-0-5198425951f0295a4f34dc18144b579b)
耦合电容CC可以利用平板电容公式确定:
![img](https://epubservercos.yuewen.com/BD9427/23020634701634806/epubprivate/OEBPS/Images/txt002_71.jpg?sign=1738847783-SHtS9VagEMJeLQB9yoY56N3PU7s3WHPC-0-dd82e38aac9e91549f05f45a224d70ad)
式中,ε为介电常数,D为两层金属层之间介质的厚度,WC和LC分别为金属线圈的宽度和厚度。
两层金属间圆柱通孔的高度大约有几微米,远远小于工作波长的十分之一,因此其电感量Lvia可以由微带线的计算公式来估计:
![img](https://epubservercos.yuewen.com/BD9427/23020634701634806/epubprivate/OEBPS/Images/txt002_72.jpg?sign=1738847783-ndZg4uHFlPmhWLNOSlgZqbMXAXHWDOYo-0-3d124d99f701048f394f6a27280ebe98)
式中,c为自由空间光的速度,Zo为馈线的特性阻抗,L为馈线长度和圆柱通孔高度之和。
图2.38给出了电感Lvia+nLC和本征电阻RC在低频情况下的提取结果,从图中可以看到,在0.1~2.0GHz的频段范围内几乎为常数。图2.39给出了衬底电阻Rsub1和Rsub2的提取结果,从图中可以看到,输入/输出端口的衬底电阻很接近。
![img](https://epubservercos.yuewen.com/BD9427/23020634701634806/epubprivate/OEBPS/Images/txt002_73.jpg?sign=1738847783-axuK6vw6c6FEtzXlCOKHe6J0fcyBXV4S-0-5351e0fac8e0ee828ef3fb616bd2ed46)
图2.38 电感Lvia+nLC和本征电阻RC在低频情况下的提取结果
![img](https://epubservercos.yuewen.com/BD9427/23020634701634806/epubprivate/OEBPS/Images/txt002_74.jpg?sign=1738847783-uXsixJcVijrxcoj0iQjR04tdgogIeJb5-0-4315f2a9d1ec7d3135f306a7e35203a1)
图2.39 衬底电阻Rsub1和Rsub2的提取结果
表2.7给出了提取的模型参数,其中第一列数值为直接提取结果,第二列数值为进一步优化的结果。图2.40给出了10MHz~20GHz频段S参数模拟和测试对比曲线,可以看出,模拟结果和测试结果吻合得很好。图2.41给出了10MHz~20GHz频段S参数精度对比曲线,可以发现和传统模型相比,本文所提出模型S11的精度在高频范围内得到了较大的改善。
表2.7 三维电感模型参数
![img](https://epubservercos.yuewen.com/BD9427/23020634701634806/epubprivate/OEBPS/Images/txt002_75.jpg?sign=1738847783-X0QIqQCk5s3bfQgc2kJP397t4RyIEsMZ-0-6f5fe2178130a73d4e31d256d4636e7f)
![img](https://epubservercos.yuewen.com/BD9427/23020634701634806/epubprivate/OEBPS/Images/txt002_76.jpg?sign=1738847783-K5FhdP3twXk6VciPaWdjTt0faxezaEwr-0-9c52ab76f991c2da0414ca114fcb406e)
图2.40 三维电感S参数模拟和测试对比曲线
![img](https://epubservercos.yuewen.com/BD9427/23020634701634806/epubprivate/OEBPS/Images/txt002_77.jpg?sign=1738847783-yhRgmbNOogiCjZzhOzrzpWkmOi28U1pz-0-ccf3cb27b2353a63ca791d73ae6d4d3e)
图2.41 三维电感S参数精度对比曲线