![蝴蝶效应之谜:走近分形与混沌](https://wfqqreader-1252317822.image.myqcloud.com/cover/222/40375222/b_40375222.jpg)
![](https://epubservercos.yuewen.com/435F72/20964120301713306/epubprivate/OEBPS/Images/figure_0003_0001.jpg?sign=1738884660-TfrA5amgJqUB9gMk1MxUw7CUlNJHD2gv-0-9e7b804017bc3bf0c523f3778cb7fc92)
图1.1.3 分形龙的自相似性
![](https://epubservercos.yuewen.com/435F72/20964120301713306/epubprivate/OEBPS/Images/figure_0003_0002.jpg?sign=1738884660-MjLIlYYyBYjy9Sf7YLc6k3o3GE88dDOL-0-c6ef91da9797f475055ab350735d7d18)
图1.2.3 科赫雪花
![](https://epubservercos.yuewen.com/435F72/20964120301713306/epubprivate/OEBPS/Images/figure_0003_0003.jpg?sign=1738884660-ArtD6Y5lcCvV7gZ3ckZ0fciZZaQkJ46r-0-2b61616e4acf1124fddf41772587d780)
图1.3.1 用度量方法定义的维数
![](https://epubservercos.yuewen.com/435F72/20964120301713306/epubprivate/OEBPS/Images/figure_0004_0001.jpg?sign=1738884660-9SI1ZKcRtwcw66yA1VDbHZiVJNTgMmX4-0-a7548a64366a7ee85e65d860c33ae5e0)
图1.4.6 分形龙边界由四段自相似图形构成
![](https://epubservercos.yuewen.com/435F72/20964120301713306/epubprivate/OEBPS/Images/figure_0004_0002.jpg?sign=1738884660-8Pkx042ANcUjq3PgudexQBXmpFsH3eUt-0-ce2ba5d556773e0b4da7ff69f4879d5a)
图1.5.1 计算机产生的树叶形分形图
![](https://epubservercos.yuewen.com/435F72/20964120301713306/epubprivate/OEBPS/Images/figure_0005_0001.jpg?sign=1738884660-KQYr9SK5LSSHmaP250LJzZnW5hDvmJ2k-0-333b043e752b5226fc663663553462bf)
图1.7.1 曼德勃罗集所形成的图形
![](https://epubservercos.yuewen.com/435F72/20964120301713306/epubprivate/OEBPS/Images/figure_0005_0002.jpg?sign=1738884660-p8lW4GYpN2UURrt6HVAunhBvDdtMPuuc-0-e539188fc09301b7f14ccace1c9c001f)
图1.7.2 用曼德勃罗-朱利亚图形设计的丝巾图案(红线勾出的图形与图1.7. 1右下图的朱利亚集相似)
![](https://epubservercos.yuewen.com/435F72/20964120301713306/epubprivate/OEBPS/Images/figure_0006_0001.jpg?sign=1738884660-uTXM39py8d1KRGPLHZ9bAk2Umq7CSASN-0-b2940cb9a7a32c69bd8e6087df495e96)
图1.8.1 左侧图是曼德勃罗集,右侧是对应于曼德勃罗图形中(x=0.379, y=0.184)处的朱利亚集
![](https://epubservercos.yuewen.com/435F72/20964120301713306/epubprivate/OEBPS/Images/figure_0006_0002.jpg?sign=1738884660-CUuFaF7mOTn30DQkhba1JXeKa21tIpi6-0-98048d2a4ad8d05edb09235e21df00e4)
图1.8.3 曼德勃罗集中不同的点对应不同的朱利亚集
![](https://epubservercos.yuewen.com/435F72/20964120301713306/epubprivate/OEBPS/Images/figure_0007_0001.jpg?sign=1738884660-GCrEvUUK99dJZjZgxLQbzJk86TAR6t3z-0-08038e61bdeca2ba3cadf1e7a7e4ea49)
图2.2.1 洛伦茨吸引子
![](https://epubservercos.yuewen.com/435F72/20964120301713306/epubprivate/OEBPS/Images/figure_0007_0002.jpg?sign=1738884660-njRUveCQO0AGXhkaM2pAOCNG2NEOYpg0-0-6b659248c23e942e3e0d87223b40499e)
图2.4.1 洛伦茨吸引子是个2.06维的分形
![](https://epubservercos.yuewen.com/435F72/20964120301713306/epubprivate/OEBPS/Images/figure_0007_0003.jpg?sign=1738884660-engdNJ92ZeaxsnEKbqbqCacSXPaFwhsD-0-058b751b0974b96952e78c2cb92b38bc)
图2.6.2 限制性三体问题:初值有微小差别的十条轨道随时间的演化过程
![](https://epubservercos.yuewen.com/435F72/20964120301713306/epubprivate/OEBPS/Images/figure_0008_0001.jpg?sign=1738884660-2XuxMCjZbUlrFrGC9AavDB0riaCURlEq-0-5b9b4adeb2838aab96ccd3ba41a38695)
图2.7.2 对应于不同的k值,逻辑斯蒂方程解的不同长期行为
![](https://epubservercos.yuewen.com/435F72/20964120301713306/epubprivate/OEBPS/Images/figure_0008_0002.jpg?sign=1738884660-l9hVtymN9RkoAqkYj2BTTvF4QeBapEvj-0-f5ddf99cf5044cb5d59e8098015531b7)
图2.8.1 倍周期分岔现象(2.9<k<3.9)
![](https://epubservercos.yuewen.com/435F72/20964120301713306/epubprivate/OEBPS/Images/figure_0009_0001.jpg?sign=1738884660-JEndFtCoDwezMOXejfJWMsBKwi2UlUCP-0-953dbe167195983c848d4bcbecd3e970)
图2.9.1 不同k值下的逻辑斯蒂迭代图
![](https://epubservercos.yuewen.com/435F72/20964120301713306/epubprivate/OEBPS/Images/figure_0009_0002.jpg?sign=1738884660-fPSKi3jT3Nf1y0CIuJfVxc7UQnAITyZK-0-db780addb199979fef29e92c6d7e4652)
图2.9.2 不稳定和稳定
![](https://epubservercos.yuewen.com/435F72/20964120301713306/epubprivate/OEBPS/Images/figure_0010_0001.jpg?sign=1738884660-llLLqBhqIY7dDl2xnxAuEpDIvV5u70LJ-0-02e698b8c3d59050cd67f74f8b9c27e5)
图2.9.4 逻辑斯蒂系统的李雅普诺夫指数及对应的分岔情形
![](https://epubservercos.yuewen.com/435F72/20964120301713306/epubprivate/OEBPS/Images/figure_0010_0002.jpg?sign=1738884660-gYWykrPfZOsZclGAg3lCORHVeyS8aQ2L-0-7f482ff468e55c1b918613fb71739012)
图3.3.2 对三段不同频率的正弦函数组成的图形的窗口傅里叶变换结果
![](https://epubservercos.yuewen.com/435F72/20964120301713306/epubprivate/OEBPS/Images/figure_0011_0001.jpg?sign=1738884660-OkMqlUvK5lqXYrjlziEtb2AcaviPfqSN-0-54013d540f5266109ea9d25b85b13385)
图3.4.1 人体大脑和肺泡结构呈现分形
![](https://epubservercos.yuewen.com/435F72/20964120301713306/epubprivate/OEBPS/Images/figure_0011_0002.jpg?sign=1738884660-qQ6dwRSpma1fvrAlV5dW1XSZBqmjZS4n-0-f05c1004d6cd301ac5f67b18b3b6cf8e)
图4.2.2 倍周期分岔图和曼德勃罗集
注:连接上下两图的白色竖线表明逻辑斯蒂分岔和曼德勃罗集之间的关联,白线下端的数字对应于曼德勃罗集中不同的复数c的实数值。
![](https://epubservercos.yuewen.com/435F72/20964120301713306/epubprivate/OEBPS/Images/figure_0012_0001.jpg?sign=1738884660-cfa4ybBL2UgXlgN0Xog8BM7GSOyyeYw6-0-f1a8090c98769ab102318a94f4ece01f)
图4.3.1 用混沌游戏方法生成谢尔宾斯基三角形
![](https://epubservercos.yuewen.com/435F72/20964120301713306/epubprivate/OEBPS/Images/figure_0012_0002.jpg?sign=1738884660-swXJTcYFRBb3A0uNil0LTmMAgaC9z2E3-0-631a56f9336c0b855a0311d2f45ca5a5)
.3.2 生成谢尔宾斯基三角形的混沌游戏,不同实验点数的不同结果
![](https://epubservercos.yuewen.com/435F72/20964120301713306/epubprivate/OEBPS/Images/figure_0012_0003.jpg?sign=1738884660-ewrVExHT3tX4BsUNkbAx6UnoFtujs5k5-0-a4edc6dfc23a5e3e69b8a9a53c58c59e)
图4.4.3 结构稳定性示意图
![](https://epubservercos.yuewen.com/435F72/20964120301713306/epubprivate/OEBPS/Images/figure_0013_0001.jpg?sign=1738884660-56vnimlW54T3fsbfiZYBE2pCpbCvA3Mr-0-f526ec052bb9ca678a8d473f09799327)
图4.4.4 马蹄映射和奇异吸引子的形成
![](https://epubservercos.yuewen.com/435F72/20964120301713306/epubprivate/OEBPS/Images/figure_0013_0002.jpg?sign=1738884660-eCfusA74T7ISqDQoJ0fd3zUy5z8XwIrW-0-a238aaa4156755ddb774a0baf48fe12f)
图5.1.3 环面破裂混沌之路
![](https://epubservercos.yuewen.com/435F72/20964120301713306/epubprivate/OEBPS/Images/figure_0013_0003.jpg?sign=1738884660-MYZEPxXa8dKr0uZ9BLpJ4XdwTgzUtIT8-0-a4dfa732c91d4215e6d54feca462a5cd)
图5.3.1 标准普尔20年增长曲线
![](https://epubservercos.yuewen.com/435F72/20964120301713306/epubprivate/OEBPS/Images/figure_0013_0004.jpg?sign=1738884660-2DIMCkY9cfl3RwikmyqgHod4VD5054eM-0-6deff8994030b67dc4d67becf23ae74a)
图6.4.4 生命游戏模拟“无序到有序”
![](https://epubservercos.yuewen.com/435F72/20964120301713306/epubprivate/OEBPS/Images/figure_0014_0001.jpg?sign=1738884660-9kTqtKdOJiiiQFEXjOCkCwHnJw4QCjaK-0-d2f6dcf490dc0e4058ddb5e22997c328)
图5.4.1 三种多址方式的比较
![](https://epubservercos.yuewen.com/435F72/20964120301713306/epubprivate/OEBPS/Images/figure_0014_0002.jpg?sign=1738884660-5SITmwQ50eBo4UanqAr9AbHUBBYeJdro-0-6179c8ff7262b6eaac012ef3e530f178)
图6.4.3 计算机模拟的生命游戏迭代过程
(这个计算机生成的图中,黑色部分表示死,其他彩色表示生)
生命游戏程序引自:http://www.tianfangyetan.net/cd/java/Life.html