![线性代数](https://wfqqreader-1252317822.image.myqcloud.com/cover/771/34514771/b_34514771.jpg)
§1.1 引言
1. 二阶行列式
求解线性方程组是代数学中的一个基本问题. 例如解二元线性方程组
![0](https://epubservercos.yuewen.com/D48328/18433190901777406/epubprivate/OEBPS/Images/47472-00-008-01.jpg?sign=1739294442-1JLYQSy5oiF3KPrQlf3JMtNVk9PoQPGN-0-e44c2ea2c81b0eee575d5db41a2c4f3a)
为消去未知数x2,以a22与a12分别乘上列两方程的两边,然后两个方程相减,得
(a11a22-a12a21)x1=b1a22-a12b2.
类似地,消去x1得
(a11a22-a12a21)x2=a11b2-b1a21.
当a11a22-a12a21≠0时,方程组(1.1)有唯一解
![0](https://epubservercos.yuewen.com/D48328/18433190901777406/epubprivate/OEBPS/Images/47472-00-008-02.jpg?sign=1739294442-rsov0XeqI9ekwqHSWMWT0wtgU8vad1r1-0-3c339fd7aee4c7582f5b532c715dbfe3)
为使解的表达式简明,引入如下记号
![0](https://epubservercos.yuewen.com/D48328/18433190901777406/epubprivate/OEBPS/Images/47472-00-008-03.jpg?sign=1739294442-Jd5RHPKtFXjF3mdA05spSLDWM2flWZZr-0-cf5ff4db22d505286279e2c43a19d811)
并称为二阶行列式,其中横排称为行,竖排称为列.
数aij(i=1,2;j=1,2)称为行列式(1.3)的元素或元. 元素的第一个下标i称为行标,表明该元素位于第i行,第二个下标j称为列标,表明该元素位于第j列. 位于第i行第j列的元素称为行列式(1.3)的i,j元.
上述二阶行列式的定义,可用对角线法则来记忆. 把a11到a22的实联线称为主对角线,a12到a21的虚联线称为副对角线,于是二阶行列式便是主对角线上的两元素之积减去副对角线上两元素之积所得的差.
![0](https://epubservercos.yuewen.com/D48328/18433190901777406/epubprivate/OEBPS/Images/47472-00-009-01.jpg?sign=1739294442-n1eyGXAS6mYSOIY2vaeKdwgcm7i5Bx17-0-16a459a29029511a03e40fdbbdc324ef)
若记
![0](https://epubservercos.yuewen.com/D48328/18433190901777406/epubprivate/OEBPS/Images/47472-00-009-02.jpg?sign=1739294442-tjtLRtCUucsNURiw9XaSzsbpw2S6D4ff-0-c219298c6477ab17f361b92f2d193ea4)
则式(1.2)可写成
![0](https://epubservercos.yuewen.com/D48328/18433190901777406/epubprivate/OEBPS/Images/47472-00-009-03.jpg?sign=1739294442-hxAJP3agF8T8s5b2qfUKtLLLWs5FboF4-0-4ef912f5af65a32ab81528c050358b90)
注意这里的分母D是由方程组(1.1)的系数所确定的二阶行列式(称系数行列式),x1的分子D1是用常数项b1,b2替换D中x1的系数a11,a21所得的二阶行列式,x2的分子D2是用常数项b1,b2替换D中x2的系数a12,a22所得的二阶行列式.
例1 求解二元线性方程组
![0](https://epubservercos.yuewen.com/D48328/18433190901777406/epubprivate/OEBPS/Images/47472-00-009-04.jpg?sign=1739294442-4JMmboYKeb1cd3GzUVKI5cliM9LaI6rQ-0-741d90d8715c8a9b9b2594387a98146f)
解 由于
![0](https://epubservercos.yuewen.com/D48328/18433190901777406/epubprivate/OEBPS/Images/47472-00-009-05.jpg?sign=1739294442-241tSSbx0QypyG9qRm8DAj57a44iMOGv-0-26aa824bf89f4d3f001e898764ef1459)
因此
![0](https://epubservercos.yuewen.com/D48328/18433190901777406/epubprivate/OEBPS/Images/47472-00-009-06.jpg?sign=1739294442-OFmuTfuPPzm5wzlCi3wggJGpdij3TtXr-0-bcd6de89526d91b5ac2b8d0e3834e4c6)
2. 三阶行列式
类似地,用消元法解三元线性方程组
![0](https://epubservercos.yuewen.com/D48328/18433190901777406/epubprivate/OEBPS/Images/47472-00-009-07.jpg?sign=1739294442-bDZ3DdVVZeH9eQcQ8DJ794fKTTHbmNNO-0-6ffe795afb33f31fbaf23c3ab91222be)
为使解的表达式简明,引入三阶行列式
![0](https://epubservercos.yuewen.com/D48328/18433190901777406/epubprivate/OEBPS/Images/47472-00-009-08.jpg?sign=1739294442-P49mlAXX2BgVUiXTMlODz1jSi4SaCur4-0-4634fbffa686a56d4e9e11b8061ba477)
并定义
![0](https://epubservercos.yuewen.com/D48328/18433190901777406/epubprivate/OEBPS/Images/47472-00-009-09.jpg?sign=1739294442-DViwJZ9XDWECQafdcJ35pIvNVgbIWDBc-0-e28beff25534c057024544f9757fbd7d)
从上式看出,三阶行列式(1.5)含6项,每项均为不同行不同列的三个元素的乘积再冠以正负号,其规律如图1-1所示的对角线法则。
图1-1中有三条实线看作是平行于主对角线的联线,三条虚线看作是平行于副对角线的联线,实线上三元素的乘积冠以正号,虚线上三元素的乘积冠以负号.
![0](https://epubservercos.yuewen.com/D48328/18433190901777406/epubprivate/OEBPS/Images/47472-00-010-01.jpg?sign=1739294442-vcfYGslFOtZ21yXIxsQD14TeBwYdgqzF-0-52632262fdf59b23a02d95076aeabedd)
图1-1
运用消元法解方程组(1.4)可知,当(1.5)中D≠0时,方程组(1.4)有唯一解
![0](https://epubservercos.yuewen.com/D48328/18433190901777406/epubprivate/OEBPS/Images/47472-00-010-02.jpg?sign=1739294442-iGsHS2WSUAxJ1EQtKM47rWDQgz8qCY8q-0-298638f9c2d3a4acd85314457e93f1db)
其中
![0](https://epubservercos.yuewen.com/D48328/18433190901777406/epubprivate/OEBPS/Images/47472-00-010-03.jpg?sign=1739294442-6PdoeTWSgPRfI1axsZAQQaetJMBIj6b1-0-f5331bd5b289a7237d4a648c80561dce)
例2 求解三元线性方程组
![0](https://epubservercos.yuewen.com/D48328/18433190901777406/epubprivate/OEBPS/Images/47472-00-010-04.jpg?sign=1739294442-Oo2BHwojrIcSXquHnrs9p7RvUrTOgoFP-0-3930076de28819f531005d9f0f49b839)
解 容易算出
![0](https://epubservercos.yuewen.com/D48328/18433190901777406/epubprivate/OEBPS/Images/47472-00-010-05.jpg?sign=1739294442-BUdT0ZUWqwsw788PZwO5ts2wrVsNVT6k-0-50ec3b4d0baf042402d2d470759f8625)
所以方程组(1.7)有唯一解
![0](https://epubservercos.yuewen.com/D48328/18433190901777406/epubprivate/OEBPS/Images/47472-00-010-06.jpg?sign=1739294442-CjPK5HRgZ6hFWFkojoE0fxFm8iPadUGQ-0-84884198948f8ca5b5ec9eeaf33d744e)
例3 解方程
![0](https://epubservercos.yuewen.com/D48328/18433190901777406/epubprivate/OEBPS/Images/47472-00-010-07.jpg?sign=1739294442-aRHGlfD0LxvDp0W1bJ1elAhf8BKNvrGU-0-9202aaa6f9ea07aa5f98b81ca341ec52)
解 方程左边的三阶行列式
D=(x+1)2+6+6-3(x+1)-6-2(x+1)=x2-3x+2,
由
x2-3x+2=0
解得
x=1 或 x=2.