
第八届全国大学生数学竞赛预赛(2016年非数学类)
试题
一、填空题(本题共5个小题,每题6分,共30分)
(1)若f(x)在点x=a处可导,且f(a)≠0,则.
(2)若f(1)=0,f′(1)存在,求极限.
(3)若f(x)有连续导数,且f(1)=2,记z=f(exy2),若,求f(x)在x>0的表达式.
(4)设f(x)=exsin2x,求f(4)(0).
(5)求曲面平行于平面2x+2y-z=0的切平面方程.
二、(14分)设f(x)在[0,1]上可导,f(0)=0,且当x∈(0,1)时,0<f′(x)<1.试证:当a∈(0,1)时,有

三、(14分)某物体所在的空间区域为
Ω:x2+y2+2z2≤x+y+2z.
密度函数为x2+y2+z2,求质量

四、(14分)设函数f(x)在闭区间[0,1]上具有连续导数,f(0)=0,f(1)=1,证明:

五、(14分)设函数f(x)在区间[0,1]上连续,且.证明:在(0,1)内存在不同的两点x1,x2,使得

六、(14分)设f(x)在(-∞,+∞)上可导,且

用傅里叶级数理论证明f(x)为常数.
参考答案
一、解


(3)由题设,得.令exy2=u,则当u>0时,有

积分得lnf(u)=lnu+C1,即f(u)=Cu.
又由初值条件得f(u)=2u.所以,当x>0时,f(x)=2x.
(4)将ex和sin2x展开为带有佩亚诺型余项的麦克劳林公式,有

所以有,即f(4)(0)=-24.
(5)曲面在(x0,y0,z0)的切平面的法向量为(x0,2y0,-1).又切平面与已知平面平行,从而两平面的法向量平行,所以有

从而x0=2,y0=1,得z0=3,所以切平面方程为
2(x-2)+2(y-1)-(z-3)=0,即2x+2y-z=3.
二、证明 设,则F(0)=0,下证F′(x)>0.
再设,则F′(x)=f(x)g(x),由于f′(x)>0,f(0)=0,故f(x)>0.从而只要证明g(x)>0(x>0).而g(0)=0.因此只要证明g′(x)>0(0<x<a).而
g′(x)=2f(x)[1-f′(x)]>0.
所以g(x)>0,F′(x)>0,F(x)单调增加,F(a)>F(0),即

三、解 由于

是一个各轴长分别为1,1,的椭球,它的体积为
.
做变换,将区域变成单位球Ω′:u2+v2+w2≤1,而
,所以

而 .所以
.
四、证明 将区间[0,1]分成n等份,设分点为,则
.且

五、证明 设,则F(0)=0,F(1)=1.由介值定理,存在ξ∈(0,1),使得
.在区间[0,ξ],[ξ,1]上分别应用拉格朗日中值定理,得


所以

六、证明 由可知,f是以2,
为周期的周期函数,所以,它的傅里叶系数为

由于,所以

故有;同理可得

联立,有

解得an=bn=0(n=1,2,…).
而f(x)可导,其傅里叶级数处处收敛于f(x),所以有

其中为常数.