![MATLAB矩阵分析和计算](https://wfqqreader-1252317822.image.myqcloud.com/cover/872/26542872/b_26542872.jpg)
上QQ阅读APP看书,第一时间看更新
2.2 矩阵的加法、乘法和矩阵的转置
1. 矩阵的加法
设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P24_8145.jpg?sign=1738851291-fMkafoZxzcHgZ6g6a6N4kSMCe2DhdvXa-0-9961cb01b6639f53cdc86bf156da62ec)
是两个s×n矩阵,则s×n矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P24_8146.jpg?sign=1738851291-p38CUqbeMClf3NY1IEp3IG1SkX7quwOK-0-1d759a9973b3ae423404efadc25ef5b1)
称为A和B的和,记作
C=A+B
从定义可以看出:两个矩阵必须在行数与列数分别相同的情况下才能相加。
【手工计算例5】
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P24_8149.jpg?sign=1738851291-f4q7dsYAaOTZYqAnUaXPIqrJP48tCiOg-0-1ad7993d2e8c819b4f71501dd8e83e40)
2. 矩阵的乘法
定义矩阵的乘法如下:
设A是一个s×n矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8151.jpg?sign=1738851291-LKhEJSqoLPO6mWj61aJYNshusgWUB8Tu-0-64124cca536583603eaf97842a973bbc)
B是一个n×m矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8152.jpg?sign=1738851291-S9nRPOBVu3TwNMRmSOJ4ncx0RJIxqpOL-0-da7f71b3c0e482510529c87da9dac08d)
作s×m矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8153.jpg?sign=1738851291-fAZUylby6fDdC8f5RxO2KPzogTn6PB8k-0-69ee8b738a41ede7b0b0c672a25a6f88)
其中,
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8154.jpg?sign=1738851291-kdvd1Ezzn0EnDOwMAJsXQqCnVOHWsBZW-0-38dfa183ab921656dcdc18aeca0d63cc)
矩阵C称为矩阵A与B的乘积,记为
C=AB
注意:在矩阵乘积的定义中,要求第1个矩阵的列数必须等于第2个矩阵的行数。
【手工计算例6】 设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8157.jpg?sign=1738851291-1DoeIWphaXh8x7WtRZjmMpXSsQyk6nHE-0-ae1c22d4d67566ab0a099e1107956c14)
则
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8158.jpg?sign=1738851291-5PsOSYLhSOer6UeTZLSuOvlOerasO4kb-0-3201179d29119926ab026f3223249085)
矩阵的乘法与数的乘法有一个重要区别:就是矩阵的乘法不满足交换律,也就是说,矩阵的乘积AB与BA不一定相等。看下面的例子。
【手工计算例7】 设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8161.jpg?sign=1738851291-fpXac6kShGB2QSTt52jgCuQrdBYzHyaq-0-e8548a7baf0d6592043c06f276ee03e5)
则
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8162.jpg?sign=1738851291-tfTzRiQFPveMGpr9Lxuw7y7UNkFHOMV6-0-36fc98ddb9ec50f317b0b8cde32b692a)
可见,在本例中,AB和BA完全不同。
3. 矩阵的转置
把一个矩阵的行列互换,所得到的矩阵称为这个矩阵的转置。
设A是一个s×n矩阵:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8165.jpg?sign=1738851291-x601nczp8E6VQCTQ29bbXg4t9OItCpv6-0-a01e4e3a1c20688bf2dbf29a4c262a25)
s×n矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8167.jpg?sign=1738851291-XK8TYWrKVDPrR38IGMWLMAenIlErDX5y-0-ce8290ca361b044721ec99721ed90cf8)
称为A的转置矩阵,记作A′。
【手工计算例8】 设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8168.jpg?sign=1738851291-mVgIF3kvYLAZNORf3UCLDFjL60KO3T0U-0-5d775bfaeb382b40ff17e95e5ce14674)
则
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8169.jpg?sign=1738851291-VFm6LquO95aZwEfEwN7f41e9qCaVgLK2-0-7e0b8d371e4fd7c8e6d3bd9cc1863113)