![回归分析(修订本)(社会学教材教参方法系列)](https://wfqqreader-1252317822.image.myqcloud.com/cover/854/23667854/b_23667854.jpg)
上QQ阅读APP看书,第一时间看更新
5.1 多元线性回归模型的矩阵形式
多元线性回归模型适用于分析一个因变量和多个自变量之间的关系。假设一个回归模型有p-1个自变量,即x1, x2, …, xp-1,则该回归模型可以表示为:
![](https://epubservercos.yuewen.com/2BA06E/12421581403624006/epubprivate/OEBPS/Images/figure_0107_0001.jpg?sign=1739677027-nz96heWrjnuoj0u2JCQaiQcTRCwxM2sO-0-48f6ab2721d7ccf45e2c5cd65d2a7895)
这里,yi表示个体i(i=1, 2, …, n)在因变量y中的取值,β0为截距的总体参数,β1, β2, …, βk, …, βp-1为斜率的总体参数。由于该回归模型包含多个自变量,因此将式(5-1)称作多元回归模型,以便于与第3章所讲的简单线性回归模型相区别。
如果我们定义以下矩阵:
![](https://epubservercos.yuewen.com/2BA06E/12421581403624006/epubprivate/OEBPS/Images/figure_0108_0001.jpg?sign=1739677027-bEieTdNbhOC3tCZKGtqxNFtFHq43dIve-0-f63caebc95bdbb0db064c049d09a185c)
那么,采用矩阵的形式,一般线性回归模型(5-1)就可以简单地表示为:
![](https://epubservercos.yuewen.com/2BA06E/12421581403624006/epubprivate/OEBPS/Images/figure_0108_0002.jpg?sign=1739677027-8hyJGSBHWksFYzaknCI2cs9Ff3uFUL4q-0-a87818fb4f5ae5c6ed9727fcb0108001)
该式也常常简记为:y=Xβ+ε。这里,y表示因变量的向量,β表示总体参数的向量,X表示由所有自变量和一列常数1所组成的矩阵,ε则表示随机误差变量的向量。