![近代光学](https://wfqqreader-1252317822.image.myqcloud.com/cover/677/683677/b_683677.jpg)
2.4 光在金属表面的反射和折射[2],[5],[20],[21]
2.4.1 金属中的透射光
假设电磁波在介电常数为ε、磁导率为μ、电导率为σ的各向同性介质中传播,根据麦克斯韦方程
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0002.jpg?sign=1738888517-JREXMo3FtA7qocgN2nPCMGkTPrnQDboC-0-7e14ac202b87593c0423c792dcbdbc45)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0003.jpg?sign=1738888517-RbQqAr20QcBQB323nFB3uKitOfaMtyui-0-a0f90f06cd2d0ffbe840b9605e427aaa)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0004.jpg?sign=1738888517-Jpvh58q6O84bWNv9gYl7gZKdsskZsbVg-0-d521ab30adc4c73205513256fbad28da)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0005.jpg?sign=1738888517-JMJWT9Q5ULp5lIJBrbQBM2nFg5ovxTXY-0-a88831ffe5fc475d31aad554bf2940ee)
式中,传导电流密度j和自由电荷密度ρ之间满足电流的连续性方程
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0006.jpg?sign=1738888517-KXvJ2mWs0mqL0uRjMWaGSZcaL7Vn1kKg-0-9359638df6ab9d77c37692622a7e1467)
由本构关系
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0007.jpg?sign=1738888517-YbV0T7tfHF9dauHB5G0tnZO96Q0pMjTu-0-527bbb1006193c90e6d6bd717ba882ca)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0008.jpg?sign=1738888517-L42LhlbI5h3tCn1WOZISKoDfllsdBPwP-0-ac55b13c7cd760346c28f75a33f46b30)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0009.jpg?sign=1738888517-Zi8EkMqHiuSZhrz4x7xSKnmkws7RHugx-0-91ba56e93bdbb3b47c8588acbf93ef5a)
将式(2.4-3)、式(2.4-5)代入式(2.4-1b)得
▽×H-=σE
对上式求散度得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0011.jpg?sign=1738888517-ufBusPGtal5kajOuMEvOgiALGN87KaNc-0-21ef43d62e578b736ec565c532db9fe2)
即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0012.jpg?sign=1738888517-bvuVDA0QW91af21gWwRihTjTxqnWj9ip-0-8b46b07f2f7d13e6cbf45d96672c1be1)
故有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0013.jpg?sign=1738888517-8pTnZUYnzjcdv1R3KPKiwMtPvI2UICst-0-b274c86bf486dfddbac342b1eabe3283)
其解为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0014.jpg?sign=1738888517-zOrR0CoYXnKPBjmIqJTVMRvXTLsYSnd9-0-d51ebc1a5ef62d00293f23347b79f53e)
其中
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0015.jpg?sign=1738888517-mjIhsr1UlpojggqNC7PMw2xeWeYvK3wW-0-37990a3b8eff720885fe9e725259a5e7)
τ称为弛豫时间。由此可见,自由电荷密度ρ随时间指数衰减。通常τ很短,对于金属约为10-1 8秒量级,因此金属中的自由电荷密度可认为始终为零,于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0001.jpg?sign=1738888517-0S7tBRV2huJyflRRmJb6nKSpVBuhFP73-0-43600839ee9682a738561244b4461ff7)
金属中的波动方程可表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0002.jpg?sign=1738888517-QNVGGFNfqxGIXmLaYBq5vrfTUhiGY9Io-0-ca76d50f1ebf79dc8e6cc3a9cec62bdf)
对单色平面光波有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0003.jpg?sign=1738888517-YNxsl7DM0qMqw1S2v3eQYkAIS91qz8M7-0-172f553db43a2882c18981a1d65e6973)
将上式代入式(2.4-12)得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0004.jpg?sign=1738888517-12xgyw5X0PBw4POSlDaY22L51tKlw91z-0-6b9bdebcb683fe03ba482950258fab71)
引入复波数k~,令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0005.jpg?sign=1738888517-m5hlJj9i3V6H6ZPGU258fpBXYEcbFNq8-0-1ae3e6e6205f7afe8ccce272fa439ed9)
再定义复介电常数ε~为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0006.jpg?sign=1738888517-24TgoldRE4sqCu6lrJZh1h9go4nU39Ig-0-930f3371079d3b0b228fe0fb4ff08f38)
这样得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0007.jpg?sign=1738888517-gQFMJiBPpmN6YXzk5FNQjL2UO7wtA3uI-0-68ad9ec5af96a8ae4f17a72462938558)
它与介质对应的关系相似。同样,可引入复相速v~、复折射率n~,各自表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0008.jpg?sign=1738888517-Ho8qXY3PYqKJCHRf7aMillCgS1ktUmZu-0-283f9bd660a7100b57bb29822cb42b28)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0009.jpg?sign=1738888517-GPWH3d6Az1bDGZtRiudbf6QI29dvqPFZ-0-a3b28137befd6681b84de99ae38776f3)
令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0010.jpg?sign=1738888517-TawiVf5W4yaDzyRHhGnYFzXNnDISzL0s-0-67f1cfa5831d5c91a8bcf928541a0517)
式中,κ称为衰减系数。取式(2.4-19)和式(2.4-20)的平方,得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0011.jpg?sign=1738888517-clIbynGGuSpF5LwqPMJ4ZNHCKUjpnRxC-0-36e8e0939bc11e33af97329095df18db)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0012.jpg?sign=1738888517-wKIxtliAGyBXQsM7GDUzYFvxxr68fz4m-0-8f633be94576ab0853976a5b7047d2e5)
故
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0013.jpg?sign=1738888517-2cBx1OuusCVJrcqvz3Ut5h6Icjkzucgo-0-e0dfd4554d038d583f51636a01afa80c)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0014.jpg?sign=1738888517-lP1b1NJTvTTt7E1SxvuZZCdNRRzASZJo-0-42d959458cfae65d1adb9792014db086)
由式(2.4-23)和式(2.4-24)解得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0015.jpg?sign=1738888517-K93su9cJWU0NmtYOosFz5VwNAya7GV7H-0-b71568303d2de826f029638008be321a)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0016.jpg?sign=1738888517-nVgjd1hR2mO6xeUpAjn7DrRBMp5jVzbb-0-9fc7bd708b05ebff950a7f718b691b5b)
引入复波矢,令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0018.jpg?sign=1738888517-8rGgwcpRGqJ0MQyU4IIB1oYe12X26BCt-0-f29a3fbab01b08f73bbda85ec9edd22e)
式中,为波矢的单位矢量,k'、k″均为实矢量。通常也将
定义为折射矢量N,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0021.jpg?sign=1738888517-bwcIDOaOxrJ0BfcqE4X7E7bWHeV23WXD-0-65cf0145509fdf92665953aaf6a972b5)
利用复波矢,可以将金属中电场矢量的波动形式表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0023.jpg?sign=1738888517-q8JfR3Xd7MfUjKrL6PUil7NNUYzrA51H-0-eada36d13eaa9d9e1cad5100112ca84c)
式中,为平面波的振幅,显然振幅沿k″方向衰减,因此也称k″为衰减常数;k'·r为
相位传播因子,k'称为传播常数。k'决定平面波的等相面,而k″则决定等幅面。一般地,k'与k″的方向不同,因此等幅面与等相面不一致,说明金属中的透射波一般是非均匀波。
不妨先看一个简单的情况,即单色平面光波垂直于金属表面传播,假设金属表面为xy平面(z=0),光波沿z轴在金属中传播,此时,k'与k″都沿z轴方向,式(2.4-29)可写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0002.jpg?sign=1738888517-xIIlUXDRjVMqDPKOxuYDcVuIWIkj27hy-0-dc8a7432e609f8c7a6105b5feba1dedb)
其中,k'、k″分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0003.jpg?sign=1738888517-hO77K0EqR30f5gIEJ9XABc7mZ0T5hv2M-0-30813e36708eda35bb8c3af4385e8513)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0004.jpg?sign=1738888517-Zs31t1Mmr2qCoZiTLto0FkmGEhrXuy8u-0-5cd069c4a7eeb3ac244e16b6f8a794d7)
对于良导体,σ/(εω)≫1,则有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0005.jpg?sign=1738888517-0ifSWTznj0uO8oQvbJjCsEjRNLNNsCEs-0-36373c8eb7e9863cc4ff0432e9b75843)
根据式(2.4-30),在z=z0=1/k″处,振幅降为表面处振幅的e-1,z0称为穿透深度,其值为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0006.jpg?sign=1738888517-oN9H03Y1Kb34nMjQuZiys09BNHxLMzAH-0-42148b238cde2391da890c379349a01b)
可见,穿透深度与光波频率及导体的电导率的平方根成反比。以铜为例,其电导率约为5.9× 107/(Ω·m),对于可见光,穿透深度约为数纳米。
将式(2.4-30)代入麦克斯韦方程组可以得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0007.jpg?sign=1738888517-QwSSsnSRmcaQn32I4NIrfoTGHiZPgEel-0-a8997f843109cafe9a064a0f502bc9c7)
式中,^为表面法线方向的单位矢量,注意不要与折射率混淆。对于良导体,将式(2.4-33)代入式(2.4-35)可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0009.jpg?sign=1738888517-xDjA8KPhtnErBkKQR2K8gLAE9pAQ6RDP-0-bba1b3632ad78588fcf91126553dfe22)
可见,磁场的相位比电场的相位落后π/4。并且
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0010.jpg?sign=1738888517-lyKoPvBhfFb7BW4rlwzB9Ji5kzm9L4XC-0-cb641e5671dbe5583b54e0dceac9b95a)
即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0011.jpg?sign=1738888517-rVEy4Pt9Ych5lxv9dS3uJP8EZQDF9hOW-0-7ccf03134e6bad545e4d342e51def21b)
而在介质中,有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0012.jpg?sign=1738888517-7ocSzAkSMqkjJyxBH9E7fndQBX7ENFKE-0-199c1bf5222460b76363756a04f002a8)
这说明相对于介质,在金属中电磁波的磁场的作用比电场的作用要大。
下面来讨论一个普遍的例子。假设介质1是空气,介质2是金属,将金属的复折射率写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0014.jpg?sign=1738888517-S0zF4uNQjqcpdgpMzPblaQiXenZpDj1q-0-0a1b7da314b084c77cf4ba50eff4d2fc)
由斯内尔定律
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0015.jpg?sign=1738888517-5OVK5A1tz91dxZFnY3bjMUrf2mdJbea2-0-9f3b108ddc88f1bbc9babce5ad501b04)
因为为复数,因此
也是复数;显然
不再有折射角的简单几何意义。在可见光范围内,金属反射不再满足布儒斯特定律。下面讨论光在金属中的实际折射角。设入射面为xz平面,金属中光波相位的空间变化为
·r,其中
可表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0001.jpg?sign=1738888517-97EJnnxsONCXLPohvw338MZZ2rN2zJXy-0-f7e27743d5500a7305123a742e07d1f2)
由式(2.4-41)和式(2.4-42),可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0002.jpg?sign=1738888517-qIpKVp2IhV0haMERxz1Vm3rZ0OapVMF2-0-8b054797c72db915ae27025d08da9af0)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0003.jpg?sign=1738888517-4X2kKc1Vkw2554pARvUX8jNm8z6npPZy-0-e905e1df04a646eaa7fcfa0380d87ce7)
为运算方便起见,令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0004.jpg?sign=1738888517-tJ95Wlib1v7gPx3g1t0u0T46iy5TMPDs-0-c72f1d20ac74004ebbed1da2890f92f8)
式中,q和γ都是实数。经过计算,得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0005.jpg?sign=1738888517-LkFDcTTeItbRx695mOWj7DbdSd42gUMc-0-22aab74e633458d3310faa89fdd4bd10)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0006.jpg?sign=1738888517-ZRJDWgRZTtjr0jRGYKDldKOENNVh4khU-0-ad2c26f72825fc3e2067bff4fc2d0bd7)
于是得到相位的空间变化为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0007.jpg?sign=1738888517-A47kAjpTqhAMNusQSnnz0ukSSLjY3gpO-0-310f90372a55d72835745cc9adf3a33b)
将上式代入式(2.4-29),可以得到等幅面方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0008.jpg?sign=1738888517-VW6wbo0jUhtKGNtCVup9sNgPiJw0ka3u-0-cb316d19bb1cc2192463c7ec3f4a80fb)
即z为常数的平面。同样也得到等相面方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0009.jpg?sign=1738888517-4kcMiRiMtzjJo1P4l2ttngiewKFZc65p-0-3fd4ec791ed746dfd449949f0464c098)
可见,等相面为平面,设该平面的法线与界面法线的夹角为,则
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0011.jpg?sign=1738888517-WBxuvT9j0Nqb7Qf2Ouuiw03ignmtdjEJ-0-0736bdb5a52645f5ba495015a46feca0)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0012.jpg?sign=1738888517-25LvUMMVRwf1ciCgAOjaVjHMTng5DM6v-0-e3b9bcfb25e99650e4fc814c873219d0)
则由上式可以得到,光从空气入射到金属中实数形式的折射定律为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0013.jpg?sign=1738888517-b9FKRohnQSIyIbS4sjtCJqll3usaheaB-0-082e4cc20fa12b850b33aef0d7b460cc)
其中为光在金属中真实折射角
为金属的实折射率,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0016.jpg?sign=1738888517-xeNNqk256kMgcj5OfRgs7iVtGCoDbdPw-0-41cd0657ccc7e4049262620c4ae2d8a7)
显然与入射角θ1有关。
2.4.2 金属界面的反射光
假设光从折射率为n1的介质入射到折射率为=n(1+iκ)的金属表面,则反射光仍然在介质中,故反射光还是均匀波。s光和p光的振幅反射率分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0019.jpg?sign=1738888517-qHb7Uh6pZbHIPwCS3bGQiBMOpdXUiJdS-0-1c04aa3206bf35840fc5b0c8a2a71fa6)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0020.jpg?sign=1738888517-h9EnqqVlRbvoqotiQHDdHXZfHPjQ6AD0-0-58bbd732c57bd2a25e3f6baea562e6be)
由斯内尔定律和三角函数关系可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0001.jpg?sign=1738888517-MaNtgiIVcZ1dzPt4Cxs20Vck5dtG60mP-0-93bd95a736ae714b3545a07be9a4bf9a)
令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0002.jpg?sign=1738888517-9CmCmOXzPvDqOsZ6FrJmLQxKMv9qjSi5-0-39ffdbe87b10341426c58f1506db81d0)
则由式(2.4-53a)和式(2.4-53b)可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0003.jpg?sign=1738888517-dS8T1QOp40XtIPA01QpJAmKMrT0EEE1x-0-057f5207b13fb20b658b5a096f86a498)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0004.jpg?sign=1738888517-KUfr8E5pSZfChIK4gg8vfPvmXNtRlokU-0-59ea087b42a3eb5b630fcff59151d2eb)
s光和p光的光强反射率分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0005.jpg?sign=1738888517-0cJ4ACWQtZ0I8eAzIcPIPrsVpTPH0j8r-0-ac0c22d87ad4e6a8b8da6e7b6157e15a)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0006.jpg?sign=1738888517-OTHQOuzNbdGSNMZXlGRXhBC0MNoFnitq-0-7870cb3e996a477165d6163aa20f6346)
令δ=δs-δp,由式(2.4-44)可得,当θ1从0°到90°时,δ从180°降到0°;其中,当θ1=θP时,δ=90°,θP称为主入射角,类似于布儒斯特角。当入射角为主入射角时,RP有极小值,但不为零,故光在金属表面的反射不符合布儒斯特定律。相应地引入主方位角ΨP,定义为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0007.jpg?sign=1738888517-i4cuvj6mwG3Vh5RAk78ZY6Vbwa9gXcWm-0-e43b8fd7e8ac4d4a2b8048ee15cf4e5d)
可以证明[2],金属的光学常数n、κ与主入射角θP及主方位角ΨP近似满足
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0008.jpg?sign=1738888517-EA9svaMJf4dpdW4CASrqOkyKxzqJxsMc-0-15ff1eb00b90bfec515d7454b090a9e7)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0009.jpg?sign=1738888517-l3pT2Os7mH5cwOBTPWv1vXmuqTCl4QWf-0-512ab8e547b23aac5c566d770301d248)
因此,通过对主方位角ΨP和主入射角θP的测量,可以获得金属的光学常数。