![电工36“技”](https://wfqqreader-1252317822.image.myqcloud.com/cover/826/654826/b_654826.jpg)
第1章 电工计算基础
1.1 常用计算公式
1. 展开式
(x+a)(x+b)=x2 +(a+b)x+ab
(a ±b)2 =a2 ± 2ab+b2
(a ±b)3 =a3 ± 3a2b+3ab2 ±b3
(a+b+c)2 =a2 +b2 +c2 +2ab+2bc+2ca
(a+b+c)3 =a3 +b3 +c3 +3a2b+3ab2 +3b2c+3bc2 +3a2c+3ac2 +6abc
a2-b2 =(a-b)(a+b)
a3 ±b3 =(a ±b)(a2∓ab+b2)
a3 +b3 +c3-3abc=(a+b+c)(a2 +b2 +c2-ab-bc-ca)
a4 +a2b2 +b4 =(a2 +ab+b2)(a2-ab+b2)
(ax+b)(cx+d)=acx2 +(ad+bc)x+bd
2. 二次方程式
ax2 +bx+c=0,a、b、c是实数,且a≠0,则该方程的根为
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0006_0001.jpg?sign=1738891176-t5yB2GxTMbWB6e8VtpRrpRg4ISGsOS7J-0-8964cae3067393f2e7245630c82edc44)
且根与系数的关系为
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0006_0002.jpg?sign=1738891176-DNdSYUk7HLf6uMcdDJodWlexEHJvh8XH-0-ace3152f857ff2aaddff2ba173dede9b)
判别式为
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0006_0003.jpg?sign=1738891176-qKRbiy7qIPxDiJkJIRVAoF5vPtRRv2Id-0-46f50aff5bff0c4481724d0256eb1a58)
3. 指数定则
m、n为正整数,a、b为正实数,则
am ×an=am+n
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0007_0001.jpg?sign=1738891176-UDgWhkoKeOHuNGDkHFu2TayAYF6JCY5x-0-5e563d87efc42e07bdf8645a5ef05e03)
(am)n=amn
(a×b)n=an ×bn
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0007_0002.jpg?sign=1738891176-yzXlUiPqc0UHNfecmDMGpB4L9IvL6kcX-0-d00c50df92d4bc86ab15ccf2dac3ff5f)
a0 =1
4. 对数定则
x、y、a、b、c为正实数,则
logaa=1
loga1=0
loga(x·y)=logax+logay
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0007_0003.jpg?sign=1738891176-3lYBjxx1YKuQ5Xco7eKWMnWaXznomsDZ-0-5bf31b97585d17a0ec7ff4a7d4da8711)
logaxn=nlogax
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0007_0004.jpg?sign=1738891176-cVCkBRf7DIjQSySJoo6pD5vLOU3yjNj4-0-fed2cd595e76dd6d41150e93990dcd74)
logax=logab × logbx
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0007_0005.jpg?sign=1738891176-NAY78X6ZumD9w6tO7tUrFEjtNzZ6hj5q-0-6276b2a8d4e398bb7f2b2c6331df996c)
logab × logba=1
lgx=lge × lnx=0.434 3lnx(其中e=2.718281 8)
5. 级数定则
等差级数
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0008_0001.jpg?sign=1738891176-ozW39ZO8A8xtbsny9mKhe6kvZ8YizfD0-0-9aae40b7770af5281702c98b89dd83f3)
等比级数:a+aq+aq2 +…+aqn-1 ={L-End}
某些数列的前n项和
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0008_0003.jpg?sign=1738891176-C4LxvIaakWyRl7m4C3dYS3R7Fp3izWp3-0-50f69f69a206731ea57951161c2f2371)
1+3+5+…+(2n-1)=n2
2+4+6+…+2n=n(n+1)
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0008_0004.jpg?sign=1738891176-Yb55JfM92huRY5zx6GOMDOMyEyaK81lW-0-9986c7190f22a1ddf7d40765844ca86f)
13 +33 +53 +…+(2n-1)3 =n2(2n2-1)
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0008_0005.jpg?sign=1738891176-ugWc036bZNbvV23K1dWtS0ezJWYNkXoW-0-7255b145f0a7ceeef6d3c0d867a5dd2a)
6. 二项式定理
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0008_0006.jpg?sign=1738891176-lmjoGGXUToDbChgzqH1w19LbsXlRgkXk-0-eda00333261496592b934979242a312b)
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0009_0001.jpg?sign=1738891176-rvrqLoI0LDBGhfPqMjZjanALguhNkZSA-0-40319703fc9ec493c45b07695d529f3e)
7. 近似计算
当a≪1,b≪1时
(1 ±a)(1 ±b)=1 ±a ±b
(1+a)(1-b)=1+a-b
(1 ±a)n=1 ±na
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0009_0002.jpg?sign=1738891176-3UJk2ArN23I4xq6juNUIjUk02CRY5V8D-0-7a5d93ebf18525c7269c0d13f8fbcc71)
sina=a
cosa=1
tana=a
8. 三角函数表(见表1-1)
表1-1 三角函数表
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0009_0003.jpg?sign=1738891176-poTSbjptLWPlyiAJHHpbnHlagrLhQFRB-0-199772079264d9d15e11ce1efbc50542)
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0009_0004.jpg?sign=1738891176-dQg6F4tX4NB20KkuggJ8hJCCp8iPcrsr-0-bccc293859fe1e47a2f59c1c40855404)
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0010_0001.jpg?sign=1738891176-u58sArb04d5iuU1JRvpgR1CYSrw4MbfH-0-3113a72e66ad428d080f89c90d9beaac)
sin2θ+cos2θ=1
1+tan2θ=sec2θ
1+cot2θ=csc2θ
sin(α ±β)=sinαcosβ ± cosαsinβ
cos(α ±β)=cosαcosβ∓sinαsinβ
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0010_0002.jpg?sign=1738891176-UbcIbLc1D4mtNET3M4SvolSyUuH3Vjph-0-4251948b7ba8a2762e1b7421984b4812)
sin(2α)=2sinαcosα
cos(2α)=2cos2α-1=1-2sin2α
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0010_0003.jpg?sign=1738891176-Xtsump6iFqGEoHigfvtaPlAL1KwlXIDI-0-fb38712ba855912590588220be6a3e84)
9. 复数
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0010_0004.jpg?sign=1738891176-Pq6jGuxvA2VnRnuM2PIizZwTUU5pLA5q-0-3c966fa2c3ea66aa118c3d17a738d841)
复数的三种表示式及其相互关系如下所述。
代数式:z=a+bj
三角式:z=|z|(cosθ+jsinθ)
指数式:z=|z|ejθ
其中,a=|z|cosθ,b=|z|sinθ,{L-End} ,tanθ={L-End}
。
复数的运算:
z1 +z2 =(|z1|cosθ1 +|z2|cosθ2)+j(|z1|sinθ1 +|z2|sinθ2)
z1 ×z2 =|z1||z2|[cos(θ1 +θ2)+jsin(θ1 +θ2)]
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0011_0003.jpg?sign=1738891176-EuQfVSSMYTevzplkFqyNsQ9fLRtzHqY8-0-15c4679a27ea3928c8fd9558459fa29e)
10. 函数和坐标图
直线方程:y=ax+b
圆方程:(x-a)2 +(y-b)2 =r2
椭圆方程:{L-End}
双曲线方程:{L-End}
抛物线方程:y2 =4ax