
会员
Kubernetes云原生数据管理
(美)Jeff Carpenter(杰夫·卡彭特)等更新时间:2024-05-11 18:19:50
最新章节:封底开会员,本书免费读 >
本书围绕Kubernetes云原生数据基础设施,介绍了如何通过Kubernetes管理数据存储,如何通过Helm和Operator在Kubernetes上自动部署和管理数据库,阐述了数据流式传输和数据分析的过程,探讨了在机器学习及其他新兴用例中如何使用Kubernetes云原生数据等。本书不仅深入阐述了云原生基础设施的发展历程和处理方式,而且分门别类地为每个场景提供了可以直接运行的示例代码,以便读者学习和练习。本书结构与英文原版保持一致,是DaoCloud云原生数据存储专家经反复校对后提供的译本。本书适合从事云端设计、构建和运行应用的开发人员,以及架构师和云原生工程师。无论你是Kubernetes数据存储方面的“新手”还是有经验的“老兵”,相信本书都能让你有所受益。
译者:「DaoCloud 道客」HwameiStor开源团队
上架时间:2024-01-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
Kubernetes云原生数据管理最新章节
查看全部(美)Jeff Carpenter(杰夫·卡彭特)等
主页
最新上架
- 会员
PySpark大数据分析与应用
本书以Python作为开发语言,系统介绍PySpark开发环境搭建流程及基于PySpark进行大数据分析的相关知识。本书条理清晰、重点突出,理论叙述循序渐进、由浅入深。本书共7章,第1?5章包括PySpark大数据分析概述、PySpark安装配置、基于PySpark的DataFrame操作、基于PySpark的流式数据处理、基于PySpark的机器学习库,内容介绍注重理论与实践相结合,通过典型示例计算机10.4万字 - 会员
Python数据分析
本书系统介绍了使用Python进行数据分析需要掌握的各项知识,涵盖了Python基础知识、网络爬虫技术、正则表达式、BeautifulSoup和JSON、词语切分、自然语言处理、使用NumPy与Pandas处理数据、数据可视化技术、MySQL、机器学习、朴素贝叶斯模型、支持向量机、随机森林、深度学习以及量化投资。本书通过结合数据分析技术的理论知识与Python的实战应用,帮助读者更好地运用Pyth计算机12.3万字 - 会员
商业分析思维与实践:用数据分析解决商业问题
本书本书基于业务问题,就如何搭建分析框架,厘清分析思路,按照标准分析步骤对数据进行怡当的预处理,选择合适的分析方法和分析模型,使用恰当的分析工具对数据进行分析,以及对分析结果进行可视化和符合业务要求的解读等内容展开讲解,帮助业务专家做出合适的业务判断,制定准确的业务策略。计算机13万字 - 会员
数据指标体系:构建方法与应用实践
这是一套数据指标体系全流程构建(从规划、框架设计、数据采集加工到应用)方法论与实践指南。它不仅深入浅出地分享了通用的数据指标体系构建策略,还通过多个行业实例展示了具体操作方法。书中从数据采集入手,借助BI工具Superset实践构建过程。本着“一切技术都是为业务服务的”这一宗旨,本书除了包含数据指标体系构建相关内容外,还结合统计学原理及Excel、Python等工具,深入剖析数据指标波动对业务的影计算机12.7万字 - 会员
MySQL数据库实用教程
本书瞄准当前高校MySQL数据库教学与实验的需求,在MySQL8.0的基础上编写而成。全书分为两篇。第一篇为MySQL数据库基础,内容包含:数据库基础、MySQL语言、数据定义、数据操纵、数据查询、视图和索引、MySQL编程技术、MySQL安全管理、备份和恢复、事务管理、PHP和MySQL教学管理系统开发。第二篇为MySQL实验,所编排的各个实验与第一篇中的各章(除第10、11章外)内容相对应,计算机12万字 - 会员
数据要素五论:信息、权属、价值、安全、交易
本书从与数据要素关系最密切的信息、权属、价值、安全、交易等五个维度出发,汇聚不同学科背景的既有文献,整合现有观点,对数据要素的多维特性进行探讨,以丰富人们对数据要素的认知,凝聚共识,澄清数字时代的发展与治理迷思,为未来的相关创新提供起点。计算机14.5万字 - 会员
码上行动:利用Python与ChatGPT高效搞定Excel数据分析
本书内容分3个部分共12章。第1-4章主要介绍什么是数据分析,以及Python的编程环境和基础语法知识。第5-9章主要介绍数据处理和分析的各种方法。第10-12章介绍了如何结合Python与Excel在实际工作中进行数据处理与分析操作。计算机8.5万字 - 会员
网络科学与网络大数据结构挖掘
《网络科学与网络大数据结构挖掘》作为网络科学的工具性图书共分两大模块:第一模块是基础理论,包括网络基本概念、网络拓扑性质、复杂网络社团挖掘等内容,旨在让读者熟悉一些基本的建模方法和分析技巧。第二模块为应用模块,包括复杂网络在几个代表性领域中的应用研究分析及案例剖析等。全书没有过多地数学和物理推导,而是更为关注网络科学的思维习惯和研究方式,兼具理论性、资料性和实践性。可用于各学科领域的教学及研究人员计算机0字 - 会员
Python数据分析、挖掘与可视化从入门到精通
本书分为4篇,第1篇是基础入门篇,主要介绍数据分析与挖掘的基本概念及Python语言的数据分析基础;第2篇是数据分析篇,主要介绍常用的数据分析方法;第3篇是数据挖掘篇,主要介绍常用的数据挖掘方法;第4篇是实战应用篇,介绍两个完整的数据分析与挖掘案例。计算机10.9万字