
会员
深度学习实践:计算机视觉
更新时间:2019-07-30 17:58:11
最新章节:后记开会员,本书免费读 >
本书主要介绍了深度学习在计算机视觉方面的应用及工程实践,以Python3为开发语言,并结合当前主流的深度学习框架进行实例展示。主要内容包括:OpenCV入门、深度学习框架介绍、图像分类、目标检测与识别、图像分割、图像搜索以及图像生成等,涉及到的深度学习框架包括PyTorch、TensorFlow、Keras、Chainer、MXNet等。通过本书,读者能够了解深度学习在计算机视觉各个方向的应用以及最新进展。本书的特点是依托工业环境的实践经验,具备较强的实用性和专业性。适合于广大计算机视觉工程领域的从业者、深度学习爱好者、相关专业的大学生和研究生以及对计算机视觉感兴趣的爱好者使用。
品牌:清华大学
上架时间:2019-02-01 00:00:00
出版社:清华大学出版社
本书数字版权由清华大学提供,并由其授权上海阅文信息技术有限公司制作发行
深度学习实践:计算机视觉最新章节
查看全部- 后记
- 8.4 本章总结
- 8.3 Neural Style Transfer
- 8.2 生成对抗网络GAN
- 8.1 VAE
- 第8章 图像生成
- 7.5 本章小结
- 7.4 Keras版Triplet Network示例
- 7.3 Margin Based Network
- 7.2 Triplet Network
最新上架
- 会员
Power BI商业数据分析完全自学教程
本书共5篇,分为14章介绍了PowerBI的基本操作、数据导入、数据整理、数据建模、数据可视化分析、数据发布等相关技能。第1篇为基础入门篇(第1-3章),主要针对初学者,从零开始,系统且全面地讲解了PowerBI的入门知识点、基本操作及数据的输入和连接操作。第2篇为数据处理篇(第4-6章),介绍了PowerBI数据的整理操作、表格中行/列数据的管理,以及PowerBI数据的高级处理、M函数的使计算机0字 - 会员
云数据中心基础
本教材共介绍7个项目,项目1为云数据中心认知,主要介绍了什么是数据中心、云数据中心的特点、体系结构、云数据中心和传统数据中心的区别、绿色数据的概念以及发展趋势。项目2介绍了云数据中心的规划与设计,主要包括云数据中心的设计建设的指标、基础设施的规划以及云数据中心的优化策略。项目3介绍了云数据中心的硬件选型,主要包括服务器设备、网络设备以及存储设备的介绍和选型。项目4到项目6则重点介绍了虚拟化技术、云计算机12.1万字 - 会员
云计算服务保障体系
云计算是一种商业计算模型,它将计算任务分布在大量计算机构成的资源池上,使用户能够按需获取计算能力、存储空间和信息服务。与以往的计算模式不同,云计算环境下,信息安全和服务保障问题更严重、更突出。本书从云计算的安全技术和服务质量评价两个方面论述云计算服务保障的体系架构,安全技术方面主要阐述了基于可信计算的实时度量、基于角色的数据隔离访问、云节点信任链的动态维护模型与验证机制和多级安全访问控制模型;服务计算机9.5万字 - 会员
Python数据分析
本书系统介绍了使用Python进行数据分析需要掌握的各项知识,涵盖了Python基础知识、网络爬虫技术、正则表达式、BeautifulSoup和JSON、词语切分、自然语言处理、使用NumPy与Pandas处理数据、数据可视化技术、MySQL、机器学习、朴素贝叶斯模型、支持向量机、随机森林、深度学习以及量化投资。本书通过结合数据分析技术的理论知识与Python的实战应用,帮助读者更好地运用Pyth计算机12.3万字 - 会员
OLAP引擎底层原理与设计实践
本书分为6篇,共14章。从OLAP核心概念出发,以Presto为例,从整体执行流程到不同SQL的执行原理,力图把OLAP查询的核心流程以一种系统化的方式来给读者讲清楚。第一篇背景知识(第1章和第2章)介绍OLAP的基础知识和Presto相关的背景知识,并给出了后续贯穿全书的SQL代码;第二篇核心原理(第3章和第4章)非常详细地串讲了SQL执行流程,介绍了执行计划的生成和优化;第三篇经典SQL(第5计算机19.7万字 - 会员
数据挖掘算法实践与案例详解
数据挖掘算法为大数据与人工智能的核心,掌握数据挖掘各算法的编程实现,有助于提升大数据的实践运用能力。本书详细阐述了数据挖掘常用算法与编程实现,同时,本书以多个经典的数据挖掘赛题为案例,详细论述了数据预处理、特征选择、可视化、算法选择等全流程数据挖掘过程的编程实现,有助于提升读者面对实际数据问题时灵活运用各类算法能力。计算机4.7万字 - 会员
算法设计与分析
为了便于读者进行系统学习、分类整理知识点及遇到问题时能够快速找到求解的方法,本书按照算法策略进行划分,每一章都引入了若干个经典问题。通过问题的分析、计算模型的建立、算法的设计与描述、算法的分析来深入解读每一种算法策略所能解决的问题范畴及方法。全书共分9章,内容包括:算法设计基础、算法效率分析基础、迭代法、蛮力法、分治策略、回溯与分支界限、贪心算法、动态规划、随机算法。本书非常注重教材的可读性和实用计算机9.4万字 - 会员
Python数据分析与挖掘实战
本书以Python数据分析与挖掘的常用技术与真实案例相结合的方式,深入浅出地介绍Python数据分析与挖掘的重要内容。本书共11章,分为基础篇(第1~5章)和实战篇(第6~11章),基础篇包括数据挖掘基础、Python数据挖掘编程基础、数据探索、数据预处理、数据挖掘算法基础等基础知识;实战篇包括6个案例,分别为信用卡高风险客户识别、餐饮企业菜品关联分析、金融服务机构资金流量预测、O2O优惠券使用预计算机13.6万字 - 会员
码上行动:利用Python与ChatGPT高效搞定Excel数据分析
本书内容分3个部分共12章。第1-4章主要介绍什么是数据分析,以及Python的编程环境和基础语法知识。第5-9章主要介绍数据处理和分析的各种方法。第10-12章介绍了如何结合Python与Excel在实际工作中进行数据处理与分析操作。计算机8.5万字